
JOURNAL OF MATERIALS SCIENCE34 (1999 )5919– 5922

Two limits of melting temperatures
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It is demonstrated that the melting temperature of nanocrystals embedded in a matrix
exhibit two asymptotic limits as the size of the nanocrystal reaches its smallest value. The
lower limit of melting temperatures is related to the disappearance of size-dependent
entropy of melting and is considered as the lowest glass transition temperature which is
located between Kauzmann temperature and glass transition temperature. The upper limit
of a nanocrystal embedded in a matrix is determined by the ratio between the bulk melting
temperature of the embedded nanocrystal and that of the matrix. The predicted
thermodynamic melting temperature range and the lowest glass transition temperature are
supported by available experimental evidences. C© 1999 Kluwer Academic Publishers

1. Introduction
The melting temperature of a free-standing nanocrys-
tal is known to decrease as its size decreases [1–8],
while a nanocrystal embedded in the matrix can melt
below or above the bulk melting temperature [1, 4,
6]. These experimental observations are well explained
by a recent model developed on the basis of suppres-
sion or intensification of the thermal vibration of atoms
on the crystalline surface or interface [1, 2]. However,
the possible lower and upper limits of melting tem-
peratures for nanocrystals, which reveal the thermody-
namic liquid-crystal transition temperature range, are
not clear. The purpose of this contribution is address
this issue. It will be demonstrated that the lower limit
of melting temperature is related to the disappearance
of the size-dependent entropy of melting, and the up-
per limit of nanocrystals embedded in matrices is de-
termined by the ratio between the bulk melting tem-
perature of the embedded nanocrystal and that of the
corresponding matrix. Furthermore, the lower limit is
located between Kauzmann temperature and glass tran-
sition temperature. These results are of importance for
a further understanding of the thermodynamic behavior
of nanocrystals and glass transition.

2. Theory
The recent model for size-dependent melting tempera-
tureTm(r ) of nanocrystals with a radius ofr is given by
[1, 2],

Tm(r )/Tm(∞) = exp[−(α − 1)/(r/r0− 1)], (1)

whereTm(∞) is the corresponding bulk melting tem-
perature forTm(r ), α is the ratio between mean-square

displacement (msd) of atoms on the surfaceσ 2
s (r ) and

that within the particleσ 2
v (r ), r0 denotes a radius at

which all atoms of the nanoparticle are located on the
surface,

r0 = (3− d)h, (2)

whereh is the atomic diameter in a crystalline lattice
and d is the dimension number of low-dimensional
crystals [2]. d= 0 for nanocrystals,d= 1 for crys-
talline nanowires andd= 2 for crystalline thin films
[2]. In Equation 1, if α >1, Tm(r )< Tm(∞). Oth-
erwise, whenα <1, Tm(r )> Tm(∞). As |α− 1| in-
creases,|Tm(r )− Tm(∞)| increases. Therefore, when
the largest value ofα (αmax) and the smallest value of
α(αmin) can be determined, the lower and the upper
limits of Tm(r ), Tmin andTmax, are obtained.

Since a crystal is characterized by its long-range or-
der, the smallest nanocrystal should have at least a half
of the atoms located within the particle. Hence, the
smallest radius of a nanocrystal,rmin, is defined as 2r0.
This definition is supported by experimental evidences.
It has been found that when the thickness of a Bi thin
film decreases to 0.4 nm, its crystallinity disappears
[9]. This observation is expected since for the Bi thin
film, d= 2 in terms of Equation 2,h= 0.20 nm [10]
and 2r0= 0.40 nm. For a Pb nanowire in carbon nano-
tubes,d= 1 from Equation 2,h= 0.39 nm [10] and
2r0= 1.56 nm, which again is fully consistent with the
experimental observation that the crystallinity of Pb
disappears atr = 1.5 nm [11]. Because 2r0 is a criti-
cal size where the smallest nanocrystal can exist, the
entropy difference between the crystal and liquid or
amorphous states below 2r0 will disappear, i.e.,

slc(2r0, T) = 0. (3)
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Now, we will derive the melting temperature for the
smallest free-standing nanocrystal of size 2r0, Tm(2r0).
Before doing so, we will first introduce an expression
for the size dependence of the entropy of melting for
nanocrystals which is related to the lower limit of melt-
ing temperature of nanocrystals.

2.1. Lower limit of melting temperature
of nanocrystals

According to Mott, vibrational entropy of melting of a
bulk crystal,svib(∞) is simply determined by its melting
temperatureTm(∞), i.e. [12, 13],

svib(∞) ∝ (3k/2) ln[Tm(∞)], (4)

As a generation, the size dependence of the vibrational
entropysvib(r ) for a nanocrystal can be written as,

svib(r )− svib(∞) = (3k/2) ln[Tm(r )/Tm(∞)]. (5)

Substituting Equation 1 into Equation 5,svib(r )=
svib(∞)− (3k/2)(α− 1)/(r/r0− 1). Since the entropy
of melting for metallic crystals is mainly vibrational
in nature [13], one may suggest thatsm(r ) for metal-
lic nanocrystals follows the same size dependence as
svib(r ),

sm(r ) = sm(∞)− (3k/2)(α − 1)/(r/r0− 1). (6)

Sinceslc(2r0, T)= 0, i.e., Equation 3, the entropy of
melting for a free-standing nanocrystal of size 2r0
should also be zero,

sm(2r0) ≡ slc[2r0, Tm(2r0)], (7)

which enables us to obtain an expression forα (for a
free-standing nanocrystal,α=αmax) from Equation 6,

αmax= 2sm(∞)/(3k)+ 1. (8)

Equation 8 implies thatαmax> 1 sincesm(∞)> 0. In
terms of Equation 1 and 8, the melting temperature for
the free-standing nanocrystal in a size of 2r0 is obtained,

Tmin = Tm(2r0)α>1 = Tm(∞) exp[−2sm(∞)/(3k)].

(9)

It is interesting to point out that as a first-order phase
transition, melting degenerates into a continuous sec-
ond-order transition as the nanocrystal size reaches
its limiting value of 2r0. This is becauseTmin is a
crystal-liquid equilibrium transition temperature, the
Gibbs free energy of melting,gm(Tmin)= 0, and con-
sequently, the enthalpy of melting,hm(Tmin)= 0. This
result thatgm(Tmin)= hm(Tmin)= sm(Tmin)= 0 is sim-
ilar to the suggestion by Lam and Okamoto that the
crystal-glass enthalpy difference is equal to zero at the
highest crystal-glass transition temperature [14].

Because of the above transition characteristics at
Tmin, Tmin is certainly associated with glass tran-

sition temperatures (a second-order transition), i.e.,
Kauzmann temperature (Tk) and the glass tran-
sition temperature (Tg). According to Kauzmann,
slc(∞, Tk)= 0 [15,16]. Sinceslc(r, T) decreases asr
and T decrease [15],slc(∞, Tmin)> 0 or Tmin> Tk.
In addition, slc(2r0, Tmin)= glc(2r0, Tmin)= 0 at Tmin,
a glass-liquid transition atTmin can thermodynamically
occur with the smallest size of the liquid in 2r0. Thus,
Tmin can be considered as the lowest glass transition
temperature which can be obtained only by a zero cool-
ing (or heating) rate without crystallization. Therefore,
it is lower than usual measured glass transition temper-
ature,Tg, for instance, by heating a glass with a rate of
20 K min−1 on a calorimeter. Hence, there is,

Tk < Tmin < Tg. (10)

2.2. Upper limit of melting temperature
of nanocrystals

By firmly establishing the lower limit ofTmin for the
melting of a free-standing nanocrystal, we can also
show that the melting of a nanocrystal embedded in
a matrix has an upper limit. Firstly, we introduce the
following relationship [8, 9, 17, 18],

σ 2(r ) ∝ Tm(r )/[m2D(r )2], (11)

wherem is the atomic weight and2D(r ) is the size-
dependent Debye temperature. With Equation 11, we
will analyze the influence of matrices onσ 2(r ) of
embedded nanocrystals. For an embedded nanocrys-
tal in a matrix, its atoms on the surface are no more
free-standing. Thus,α could be decreased if there is
the interaction on interfaces between the embedded
nanocrystal and the matrix [1]. The limit case is that
the nanocrystal has a full coherent interface with the
matrix andα reaches its smallest value ofαmin. Hence,
the msd of the surface atoms of the nanocrystal could
be equal to that of the volume atoms of the matrix, i.e.,
σ 2

s (r )= σ 2
vm(∞), where the subscript m denotes the ma-

trix. We assume that msd of volume atoms approaches
that of the averaged atoms, there areσ 2

vm(∞)≈ σ 2
m(∞)

andσ 2
v (r )≈ σ 2(r ). With this assumption and at aTm(r ),

αmin = σ 2
vm(∞)

/
σ 2

v (r ) ≈ σ 2
m(∞)

/
σ 2(r )

= m22
D(r )

/
mm2

2
Dm(∞). (12)

On the other side, when Equation 11 is related to dif-
ferent melting temperatures: for the matrix at the bulk
melting temperature of the matrix,Tmm(∞), and for
the embedded nanocrystal atTm(r ), σ 2

m(∞)/σ 2(r )= 1
according to Lindemann criterion. Hence, from Equa-
tion 11,

m22
D(r )

/
mm2

2
Dm(∞) = Tm(r )

/
Tmm(∞), (13)

where 22
Dm(∞) is the bulk Debye temperature of

the matrix. Substituting Equation 13 to Equation 12,
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αmin= Tm(r )/Tmm(∞). Since the lowestTm(r ) is
Tm(∞) with α <1, the limit value ofαmin is,

αmin→ Tm(∞)/Tmm(∞). (14)

Note thatαmin> 0, which is physically meaningful
since msd of surface atoms of an embedded nanocrys-
tal in a matrix must be larger than zero. Equation 14
implies well known conditions for superheating of em-
bedded nanocrystals in a matrix thatTmm(∞)> Tm(∞)
and the existence of coherent interfaces between em-
bedded nanocrystals and a matrix. Withαmin, Tmax is
calculated by Equation 1 atr = 2r0,

Tmax= Tm(2r0)α<1

= Tm(∞) exp[1− Tm(∞)/Tmm(∞)]. (15)

From Equations 8 and 15, the value range ofα is
Tm(∞)/Tmm(∞)<α<2sm(∞)/(3k)+ 1. The corre-
sponding temperature range for a thermodynamic melt-
ing is Tmin< Tm(r )< Tmax.

It is noted that although only melting temperature
limits of nanocrystals are considered in this paper, melt-
ing temperature limits for crystalline nanowires and
thin films could also been determined by the above
model only with differentr0 being a function of di-
mension number ofd as shown in Equation 2.

3. Results
3.1. Melting temperature limits for indium

and lead
Our conclusion for two temperature limits of ele-
ments outlined above are supported by experimental
observations as shown in Figs 1 to 2 where the the-
oretical predictions and the experimental results of

Figure 1 Theoretical prediction of ln[Tm(r )/Tm(∞)] vs. 1/(r/r0− 1)
in terms of Equation 1 (solid line) and the corresponding experimental
results (•) [1] for indium. The measured results atTm(r )< Tm(∞) and
Tm(r )> Tm(∞) are obtained when In nanocrystals are embedded in Fe
and Al matrices, respectively. In the figure,h = 0.37 nm [11] andr0 =
3 h = 1.10 nm.αmin = 0.46 by use of Equation 14 andαmax = 1.55 in
terms of Equation 8 withsm(∞) = 7.62 Jmol−1 K−1 [21].

Figure 2 Theoretical prediction of ln[Tm(r )/Tm(∞)] vs. 1/(r/r0− 1)
in terms of Equation 1 (solid line) and the corresponding experimental
results (•) for lead [3, 4]. In the figure,h = 0.39 nm [11] andr0 = 3 h =
1.17 nm are used.αmin = 0.64 by use of Equation 14 andαmax = 1.66 in
terms of Equation 8 withsm(∞) = 8.28 Jmol−1 K−1 [21].

ln[Tm(r )/Tm(∞)] vs. 1/(r/r0− 1) for indium [1] and
lead [3, 4] nanocrystals are plotted. The superheating
and depression of melting point of the nanocrystals are
located in the indicated range at differentr ’s. The melt-
ing temperature of indium nanocrystals (Fig. 1) has
reached its lower and upper limits having full coherent
interfaces with Al (msd of surface atoms of the embed-
ded indium nanocrystals is as same as that of volume
atoms of the matrix) and incoherent interface with Fe
(the vibration of surface atoms of the embedded indium
nanocrystals is influenced little by the matrix), while
size-dependent melting temperature of lead nanocrys-
tals (Fig. 2) are within the two limits showing that they
have not full coherent or incoherent interfaces with ma-
trices.

3.2. Comparison among Tmin, Tk and Tg
In this section, some experimental results are shown to
identify Equation 10. In Table I some predicted values
of Tmin/Tm(∞) for metallic elements and that of the
calculatedTk/Tm(∞) based on the specific heat data
and Hoch’s model [19]. It is clear thatTmin> Tk as
indicated in Equation 10.

Table II shows the experimental values ofTg/Tm(∞)
of some Fe-, Ni-, Co-, and Pd-based ternary alloys and
the prediction of the correspondingTmin/Tm(∞) with
Equation 9. It is clear thatTmin< Tg for these glass
forming alloys. This result is again in correspondence
with Equation 10.

For the most of metallic elements, the values of
sm(∞)/k are among 0.8 to 1.4, and the correspond-
ing values ofTmin/T(∞) are between 0.4 and 0.6 in

TABLE I Comparison betweenTmin/Tm(∞) andTk/Tm(∞) for some
metallic elements. The data ofTk/Tm(∞) are cited from [19]

Li Na K Pb Sn In δ-Fe

sm(∞)/k 0.80 0.84 0.84 0.96 1.67 0.91 0.92
Tmin/Tm(∞) 0.59 0.57 0.57 0.53 0.33 0.54 0.54
Tk/Tm(∞) 0.56 0.54 0.53 0.48 0.26 0.31 0.50
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TABLE I I Comparison betweenTmin/Tm(∞) andTg/Tm(∞) for some
ternary glass forming alloys. The data ofTg/Tm(∞) are cited from [22]

Alloys(at %) sm(∞)/k Tmin/Tm(∞) Tg/Tm(∞)

Fe41.5Ni41.5P17 1.49 0.37 0.53
Co75Si15B10 1.85 0.29 0.56
Fe79Si10B11 1.54 0.36 0.58
Ni75Si18B17 1.99 0.27 0.58
Ni65Pd15P20 1.74 0.31 0.59
Fe80P13C7 1.97 0.27 0.59
Pd78Cu6Si16 2.21 0.23 0.60
Pd77.5Cu6Si16.5 2.28 0.22 0.64
Ni40Pd40P20 1.99 0.27 0.67

terms of Equation 9. However,Tmin/T(∞) for ternary
glass forming alloys listed in Table II are between 0.2
and 0.4 because the corresponding values ofsm(∞)/k
are among 1.5 to 2.3. Therefore, a strong glass former
has a lowerTmin. It is plausible that the difference be-
tweenTg andTmin shows the glass forming ability of
an alloy. This consideration is meaningful becauseTk
is only defined for a single element or compound and
is unknown for alloys [15].

It should be noted that for binary alloys, a crystal-
lization temperature,Tx, is usually measured to esti-
mateTg sinceTg cannot be obtained by heating a glass
on a calorimeter [20]. However, the assumption that
Tx≈ Tg is incorrect. Hence,Tx< Tmin for some binary
alloys does not mean thatTg< Tmin.

4. Conclusion
We have provided a microscopic understanding of the
lower and the upper limits of the size-dependent melt-
ing temperature by introducing the concept of the small-
est radius of a nanocrystal. The lower limit is related
to the zero entropy of melting in the smallest size of a
nanocrystal. The upper limit is related to the ratio of the
bulk melting temperature of the embedded nanocrys-
tals and that of the matrix. Two limits are obtained free
of any adjustable parameter. According to the model,
the thermodynamic melting temperature range is given
by Tmin< Tm(r )< Tmax. Moreover,Tmin can be con-
sidered as the lowest glass transition temperature and
Tk< Tmin< Tg. The model is consistent with the avail-
able experimental results.
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